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Proton radiography is an important diagnostic method for laser plasma experiments and is particularly
important in the analysis of magnetized plasmas. The theory of radiographic image analysis has hereto-
fore only permitted somewhat limited analysis of the radiographs of such plasmas. We furnish here a
theory that remedies this deficiency. We show that to linear order in magnetic field gradients, proton
radiographs are projection images of the MHD current along the proton trajectories. We demonstrate
that in the linear regime (i.e., the small image contrast regime), the full structure of the projected perpen-
dicular magnetic field can be reconstructed by solving a steady-state inhomogeneous 2-dimensional
diffusion equation sourced by the radiograph fluence contrast data. We explore the validity of the
scheme with increasing image contrast, as well as limitations of the inversion method due to the
Poisson noise, discretization errors, radiograph edge effects, and obstruction by laser target structures.
We also provide a separate analysis that is suited to the inference of isotropic-homogeneous magnetic
turbulence spectra. Finally, we discuss extension of these results to the nonlinear regime (i.e., the order
unity image contrast regime). Published by AIP Publishing. https://doi.org/10.1063/1.5013029

I. INTRODUCTION

Proton radiography is an experimental technique wherein
the electric and magnetic fields in a plasma are imaged
using beams of protons. The deflection by electric and mag-
netic fields of a proton’s path bears information about the
morphology and strengths of electric and magnetic fields.
This kind of imaging is in use at laser facilities around the
world and has advanced our understanding of flows, instabil-
ities, and electric and magnetic fields in high energy density
plasmas.

Two distinct types of proton sources have been devel-
oped for use in proton imaging. The first type of source uses
thermally produced protons accelerated by the extreme elec-
tric field gradients generated when a target is illuminated by
an intense laser.1–4 The second type of source uses mono-
energetic, fusion-produced protons created by the implosion
of a D3He capsule.5–8

The ability of proton imaging to provide information
about the strength and morphology of electric and magnetic
fields is exceptional. Such fields are ubiquitous in high energy
density physics (HEDP) experiments, since laser-driven flows
create strong electric fields and the mis-aligned electron den-
sity and temperature gradients in such flows create strong mag-
netic fields via the Biermann battery effect.9 Thermally pro-
duced protons have been used, for example, to detect electric
fields in laser-plasma interaction experiments1 and to image
solitons,10 laser-driven implosions,2 and collisionless elec-
trostatic shocks.11 Mono-energetic protons have been used,
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for example, to image, quantify, and distinguish between elec-
tric and magnetic fields in laser-driven plasmas from foils5 and
inside hohlraums;12 to study changes in magnetic field topol-
ogy due to reconnection,13 the morphology of the magnetic
fields generated in laser-driven implosions,14–16 the evolu-
tion of filamentation and self-generated fields in the coro-
nae of directly driven inertial-confinement-fusion capsules,17

and the Rayleigh-Taylor induced magnetic fields;18 and to
observe magnetic field generation via the Weibel instability
in collisionless shocks.19

In a few laser plasma experiments, the strength of the
projected perpendicular magnetic field was estimated by plac-
ing a grid between the proton source and the detector and
using the distorted image of the grid to measure the deflection
angle of the protons.5 Prior to the publication of the paper by
Kugland et al.20 (hereafter K2012), essentially no quantita-
tive information could be extracted from proton radiographs.
Thus, it was about a decade before any theory was devel-
oped regarding how proton radiography images could be ana-
lyzed to recover the electromagnetic structure of the imaged
plasma.

The K2012 paper furnished the first systematic quanti-
tative discussion of the analysis of proton radiographs, iden-
tifying the principal physical parameters, and identifying the
“linear” (small image contrast) and “nonlinear” (large image
contrast) regimes. K2012 noted the frequent occurrence of
high-definition structures in proton images and highlighted
caustics of the proton optical system in the nonlinear regime
as the key to interpreting such structures. Starting from a
selection of simplified field configurations, K2012 explored
the caustic image structures to be expected in radiographs
of those configurations and advocated for an approach that
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relies on recognizing the typology of such structures and using
them to infer the fields that produce them. This approach
was made more systematic in the forward-modeling code
of Levy et al.,21 who model laser-driven point-like pro-
ton sources with three-dimensional electromagnetic fields of
arbitrary strength and structure, to create synthetic proton
radiographs.

In this paper, we provide a first-principles description of
the nature of the images of magnetized plasmas produced by
proton imaging and discuss the implications for gaining infor-
mation about the morphology and the strength of magnetic
fields in high energy density laboratory experiments. Our con-
cern is strictly with the imaging of magnetic fields; we do not
treat the imaging of electric fields.

In this work, we mainly treat the linear regime (i.e., the
small image contrast regime). We do venture into the nonlinear
regime (order unity image contrast) to explore the validity of
the linear method when applied to order unity image contrasts
and furnish a path forward for formally addressing the nonlin-
ear regime. We expand on the latter in a subsequent paper.22

We show that in the linear regime, image contrasts in proton
radiographs are images of projected MHD current. It follows
from this observation that it is perfectly possible for high-
definition structures to occur even in the linear regime, where
currents with sharp distributions occur, sharp features must
occur in their radiographic images, irrespective of whether
focusing is strong or weak. We follow up the brief discussion
in K2012, which showed that inversion is, in principle, possi-
ble in the linear regime by furnishing and verifying a practical
field reconstruction algorithm and, separately, an algorithm for
recovering turbulent spectra.

In Sec. II we describe the experimental setup, including
the proton imaging diagnostic, that we consider in this paper.
In Sec. III we provide a theory of proton radiography in the
limit of small image contrasts, a situation that applies in HEDP
experiments. In Sec. IV we show how the proton radiographic
image can be used to reconstruct the average transverse mag-
netic field using this theory. We present verification tests of
the theory in Sec. V and investigate the validity of the method
with increasing image contrast. In Sec. VI, we explore and
characterize some of the errors that affect the reconstruction
of the magnetic field using proton radiographs. In Sec. VII
we apply the theory to reconstruction of the spectrum of
the turbulent magnetic field produced by a turbulent flow. In
Sec. VIII, we discuss an approach that can be used to extend
the field reconstruction algorithm to the nonlinear regime. In
Sec. IX we discuss potential limitations of caustic analysis,
which is often employed to decipher proton radiographs. We
discuss our results and draw some conclusions in Sec. X.

II. PROTON RADIOGRAPHY: DEFINITIONS AND
MAGNITUDES

In this work, we concern ourselves exclusively with
proton-radiographic imaging of magnetic structures, neglect-
ing all electric forces on proton beams, unlike the more general
investigation of K2012.20

An illustration of the experimental setup for a proton
radiographic image system is shown in Fig. 1. Protons emitted

FIG. 1. Illustration of the experimental setup.

isotropically from the implosion source at the left of the figure
pass through an interaction region of the non-zero magnetic
field, where they suffer small deflections due to the Lorentz
force. They then continue on to strike a screen, where their
positions are recorded.

If the transverse size of the interaction region di is assumed
small compared to the distance ri of the interaction region
from the implosion source, then the proton trajectories are
nearly parallel. That is, if we assume that the angular spread
ω ≡ di/ri � 1—the “paraxial” assumption also made in
K2012—we may use planar geometry at the screen. We will
adopt this assumption in what follows.

We further assume that the longitudinal size of the inter-
action region, li, is small compared with ri so that the param-
eter λ ≡ li/ri � 1. This assumption is convenient because
it allows certain geometric factors arising in integrals to be
treated as constants. This assumption was considered equiva-
lent to the previous assumption ω � 1 in K2012, since in that
work the longitudinal and transverse extents of the interac-
tion region were assumed equal. Since there are two separate
uses made here of the “small interaction region” approxima-
tion, one (paraxiality) related to the transverse extent and the
other related to the longitudinal extent, we prefer to distinguish
between the two extensions, even if they are usually physically
similar.

A third simplifying assumption made here in common
with K2012 is that the angular deflections α induced by the
magnetic field are very small. We may quantify this con-
servatively by assuming a uniform field strength B, which
gives rise to a Larmor radius rB =

mvc
eB for protons of mass

m moving at velocity 3. When rB � li, we may estimate
α ≈ li

rB
=

eBli
βmc2 , where β ≡ v

c . If the protons have kinetic energy

T, then β ≈
√

2T/mc2. Therefore,

α =
e

√
2mc2

T−1/2Bli = 1.80 × 10−2 rad ×

(
T

14.7 MeV

)−1/2

×

(
B

105 G

)
×

(
li

0.1 cm

)
. (1)

With proton kinetic energies of 3 MeV or 14.7 MeV charac-
teristic of D3He capsules and magnetic field strengths of even
106 G, even a coherent field produces small angular deflec-
tions. A random walk due to a disordered field would produce
even smaller deflections.

K2012 notes the importance of a further “small” exper-
imental parameter, which measures the strength of the vari-
ations of angular deflection induced by varying fields across
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the interaction region. Assuming a perturbation of length scale
a in the transverse direction inducing a deflection angle of char-
acteristic size α, the definition of the dimensionless number
µ is

µ≡
liα
a

. (2)

In effect, µ measures the amount of deflection per unit
(transverse) length in the interaction region. It is clearly closely
related to the derivatives of the magnetic field. The particular
importance of µ is that it controls the amplitude of density
contrast on the radiographic image: small values of µ� 1 cor-
respond to small-amplitude contrasts; larger values of µ . 1
result in order unity (i.e., nonlinear) contrasts; whereas µ > 1
can lead to a strongly nonlinear regime where proton trajecto-
ries cross and the proton focusing may lead to the formation of
caustics. Thus, the parameter µ can be used to demarcate dif-
ferent contrast regimes, which we further explore in a separate
paper.22

It is noted in K2012 that µ and α are independent param-
eters, which may be large or small without reference to each
other. In particular, one may have fields that are intense
(large α) but relatively uniform (small µ) yielding small con-
trasts or conversely weak fields (small α) with large gradients
(large µ) producing large contrasts. The latter regime was
of interest in K2012, since it is the regime in which caustic
surfaces may occur.

To summarize the research reported in this paper with
respect to the parametersω, λ, α, and µ, we assume that α� 1,
ω � 1, λ � 1, and µ � 1, which is commonly the case in
many HEDP-related proton-radiographic experimental setups.
We will see later that in this “linear” (in µ) regime, µ is in fact
directly related to MHD current density ∇ × B so that in effect
contrast amplitude is directly related (in fact, proportional) to
current strength.

As we will see, the identification of µ with MHD cur-
rent is sufficient to reconstruct the average transverse magnetic
field in detail and, separately, to infer the spectra of isotropic-
homogeneous magnetic turbulent fields. It also serves as a
caution with respect to the use of the caustic structure in the
interpretation of radiographs of magnetized plasmas: high-
definition structure on a radiograph cannot, in general, be
attributed to caustic surfaces of the proton optical system, since
they can be produced by sharp current distributions in regimes
where magnetic field gradients are too weak to produce caus-
tics. Misidentification of high-definition radiographic “blobs”
with caustics can therefore lead to overestimation of magnetic
field strengths.

III. SMALL FLUCTUATION THEORY OF PROTON
RADIOGRAPHY

We now consider the small contrast regime, µ� 1. As we
will now see, the theory of such contrasts can be constructed
in terms of a 2-dimensional deflection vector field in the focal
plane. The divergence of this field yields the proton fluence
contrast field directly and may be related to derivatives of the
magnetic field in the interaction region—specifically to the
MHD current.

A. The lateral displacement field

The fluence distribution of protons at the screen is rep-
resented by an area density function, Ψ(x⊥) d2x⊥, where x⊥
represents position along the screen. In the absence of a mag-
netic field, the density function is uniform by assumption,
Ψ0(x⊥) = ψ0, a constant. The effect of magnetization in the
interaction region is to introduce a field of small lateral dis-
placements w⊥(x⊥) that distort the uniform fieldΨ0 to produce
Ψ(x⊥). The w⊥ are “small” in the sense that they correspond
to the small angular deflections as discussed earlier.

We may relate the change in Ψ due to the magnetic field
to the displacement field w⊥. If we let the undisturbed coordi-
nates be x(0)

⊥ , so that x⊥ = x(0)
⊥ + w⊥, we have by conservation

of protons,

Ψ(x⊥) d2x⊥ =Ψ0(x(0)
⊥ )d2x(0)

⊥

=Ψ0(x⊥ − w⊥)
������

∂x(0)
⊥

∂x⊥

������
d2x⊥

≈
[
Ψ0(x⊥) − w⊥ · ∇⊥Ψ0(x⊥) + O(α2)

]

×
[
1 − ∇⊥ · w⊥ + O(µ2)

]
d2x⊥, (3)

to the first order in α and µ. It follows that

Ψ(x⊥)≈Ψ0(x⊥) − ∇⊥ · [Ψ0(x⊥)w⊥], (4)

which expresses the conservation of the “flux” Ψ0(x⊥)w⊥ in
the plane of the detector screen. Since the unperturbed proton
flux is uniform by assumption, so thatΨ0(x⊥) =ψ0, a constant,
we finally obtain

δΨ(x⊥)/ψ0 ≡
Ψ(x⊥) − ψ0

ψ0

≈−∇⊥ · w⊥. (5)

Equation (5) specifies our chief observable, the contrast
field

Λ(x⊥)≡ δΨ(x⊥)/ψ0, (6)

and relates it to the model quantity w⊥.
It should be clear from the manipulations above that we

are making essential use of the conditions α � 1 and µ� 1.
In particular, |w⊥ |/rs ∼O(α) and Λ∼O(µ), and we drop all
terms of higher order in α and µ.

B. The Lorentz force

We may relate the lateral displacement field w⊥ to the
magnetic field in the interaction region. Between its emission
and a later time t, a proton experiences a lateral motion δx⊥(t)
given by

δx⊥(t)=
∫ t

0
dt1 v⊥(t1). (7)

Here, v⊥(t1) is the lateral velocity experienced at time t1 due
to the Lorentz force accelerations received at prior times. It is
given by

v⊥(t1)=
∫ t1

0
dt2

e
mc

v n×B (x(t2)) , (8)

where n is the tangent vector to the proton trajectory, which
is approximately constant along the trajectory due to the
smallness of the angular deflection α.
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We treat the implosion source as approximately point-
like and use the near-constancy of n so that the argument
x(t) of B in the integrand of Eq. (8) is given by x(t) = n3t.
The Lorentz force is perpendicular to n, so the longitudinal
velocity 3 is constant and t = z/3, where z denotes distance
along the n-direction. We change variables from t to z,
obtaining

δx⊥(z)=
1
v

∫ z

0
dz1 v⊥(z1), (9)

v⊥(z1)=
e

mc

∫ z1

0
dz2 n×B(nz2). (10)

Combining Eqs. (9) and (10), we get

δx⊥(z)=
e

mcv
n×

∫ z

0
dz1

∫ z1

0
dz2 B(nz2). (11)

We may switch the order of integration, to obtain

δx⊥(z)=
e

mcv
n×

∫ z

0
dz2 B(nz2)

∫ z

z2

dz1

=
e

mcv
n×

∫ z

0
dz2 B(nz2) (z − z2). (12)

The intuitive meaning of this equation is that the lateral
displacement δx⊥(z) of a proton at z is a superposition of
displacements resulting from additive velocity pulses e

mc (nv)
×B d(z2/v), each pulse operating for a time (z � z2)/3.

The relation between n and the transverse location at the
screen x⊥ is

n= [ẑ + x⊥/rs] + O(ω2), (13)

where, again, ω = di/ri is the small spread angle of protons
crossing the interaction region. Defining

r(z, x⊥)≡ (ẑ + x⊥/rs)z, (14)

we may express the lateral deflection at the screen, w⊥ =
δx⊥(rs) to leading order in ω and α,

w⊥(x⊥)=
e

mcv
n×

∫ rs

0
dz B (r(z, x⊥)) (rs − z). (15)

As a further simplification, we may take advantage of
the fact that in the integrand of Eq. (15), the variation of
the magnetic field is much more rapid than that of the factor
(rs � z), which may therefore be taken outside of the inte-
gral and replaced with (rs � ri) at the cost of a relative error
of order |z − ri | /ri ∼ li/ri = λ (this is the “small longitudinal
extent” approximation discussed earlier). The result is

w⊥(x⊥)=
e(rs − ri)

mcv
n×

∫ rs

0
dz B (r(z, x⊥)). (16)

C. Divergence of deviation field

From Eq. (5), we know that the proton density field
δΨ(x⊥)/ψ0 is connected to the quantity ∇⊥· w⊥, rather that to
w⊥ directly. To calculate this quantity, it is convenient to extend
w⊥(x⊥) to a vector field u(x) defined in a 3-D neighborhood
of the detector screen. The definition of u is

u(x)≡
e(rs − ri)

mcv
x
|x|
×

∫ rs

0
dz B

(
x
|x|

z

)
. (17)

When x= x⊥ + rsẑ, it follows that |u(x) − w⊥(x⊥)| / |w(x⊥)|
∼O(ω). We also have ∇ · u= (∇⊥ · w⊥) (1 + O(ω)), since the
component of u along ẑ is O(ω). This is convenient because it
is easier to take unconstrained spatial derivatives of the expres-
sion in Eq. (17) than to take “perpendicular” derivatives of the
expression in Eq. (16).

We therefore have

Λ(x⊥)=−∇⊥ · w⊥(x⊥) = −∇ · u(x)

=
e(rs − ri)

mcv
x
|x|
· ∇ ×

∫ rs

0
dz B

(
x
|x|

z

)
, (18)

where, to get the third line, we have used the identity∇·(P×Q)
= Q·∇ × P � P·∇ × Q and the fact that ∇× x

|x | = 0.
We pass over to tensor notation, denoting a vector q by its

components qi, i = 1, 2, 3, and using the Einstein convention
that repeated indices imply summation. Letting r(z)≡ x

|x | z and
taking the derivative inside the integral, we find

Λ(x⊥)=
e(rs − ri)

mcv
xi

|x|
ε ijk

∫ rs

0
dz

∂

∂xj
Bk (r)

=
e(rs − ri)

mcv
ε ijk

xi

|x|

∫ rs

0
dz

∂

∂rl
Bk (r)

∂rl

∂xj

=
e(rs − ri)

mcv
ε ijk

xi

|x|

∫ rs

0
dz

∂

∂rl
Bk (r) z

(
δjl

|x|
−

xjxl

|x|3

)
=

e(rs − ri)
mcv

ε ijk
xi

|x|2

∫ rs

0
dz z

∂

∂rj
Bk (r)

=
e(rs − ri)

mcv
1
|x|

n ·
∫ rs

0
dz z∇×B (r(z))

≈
eri(rs − ri)

mcvrs
n ·

∫ rs

0
dz∇×B (r(z))≡ χ(x(0)

⊥ ). (19)

Here, in the first line, we have used the totally antisymmet-
ric Levi-Civita tensor ε ijk to express the cross product in the
tensor form; to get from the third to the fourth equality, we
have used the fact that ε ijkxixj = 0 to eliminate the second
term in the parentheses of the integrand; and in the final line,
we have appealed to the rapid variation of B(r(z)) in the
interaction region to replace the factor z in the integrand by
ri (1 + O(λ)) and take it outside the integral, while also setting
|x| = rs (1 + O(ω)). In the final line, we have defined the cur-
rent projection function χ(x(0)

⊥ ), a dimensionless function of
the undeflected coordinates x(0)

⊥ .
Equation (19) is amenable to an interesting interpretation.

The MHD current J is given by c
4π∇×B so that the contrast

mapΛ(x⊥) is in fact proportional to the line integral of J along
the flight path of the protons. That is, the image on the screen is
basically the projection of the z-component of the MHD current
field. We can now also interpret the small contrast regime as
the regime of small MHD currents.

It follows that in small-contrast theory, proton radiographs
of MHD plasmas are, for all intents and purposes, projective
images of the MHD current component along the proton beam.
This is a very useful observation, as it furnishes an attractive
alternative to the forward modeling advocated in K2012, where
substructures of field topologies are assembled to interpret the
radiographs.
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IV. AVERAGE TRANSVERSE MAGNETIC FIELD
RECONSTRUCTION

An interesting and useful further consequence of the the-
ory developed thus far is that it is possible to reconstruct
the proton deflections w⊥ due to a magnetized plasma. By
Eq. (16), this is equivalent to reconstructing the z-integrated
transverse magnetic field. This possibility was recognized but
not exploited in K2012, and the treatment in that work did
not recognize an important issue that must be addressed in
order for such a reconstruction to be practical, as we now
discuss.

We begin by writing Eq. (5) as follows:

− ∇0⊥ · w(x(0)
⊥ )=Λ(x⊥), (20)

where w(x(0)
⊥ ) is the lateral deflection as a function of unde-

flected lateral coordinate x(0)
⊥ and the notation ∇0⊥ refers to

differentiation with respect to the undeflected coordinates x(0)
⊥ .

The function w(x(0)
⊥ ) is written in this way to emphasize that

it is a function of the unperturbed coordinates (of which it is
also a perturbation).

The point about the coordinate dependence of w is
worth belaboring because it is the origin of a subtlety in
Eq. (20): the source term on the right-hand side is a function
of the perturbed coordinates x⊥ = x(0)

⊥ + w(x(0)
⊥ ). We therefore

have

− ∇0⊥ · w(x(0)
⊥ )=Λ(x(0)

⊥ + w(x(0)
⊥ )). (21)

The subtlety worth emphasizing here is that we may not, in
general, neglect the correction to the argument of Λ on the
RHS of Eq. (21), despite the small-deflection approximation
α� 1. The reason is that while the angular deflections may be
a small fraction of a radian, they may still result in a sub-
stantial change in Λ, in regions where gradients of Λ are
large.

Now, as pointed out in Eq. (78) of K2012, the deflection
field w(x(0)

⊥ ) is irrotational, as a consequence of the solenoidal
character of B. That is, there exists a scalar function φ(x(0)

⊥ )
such that

w(x(0)
⊥ )=−∇0⊥φ(x(0)

⊥ ). (22)

Combining Eqs. (21) and (22), we obtain the field recon-
struction equation

∇2φ(y)=Λ (y − ∇φ(y)), (23)

where we have unburdened the expressions of their super-
scripts and subscripts to reduce notational complexity by intro-
ducing y≡ x(0)

⊥ and stipulating that all gradients and Laplacians
are two-dimensional operators in the plane of the detector and
differentiate with respect to y.

Equation (23) differs from the reconstruction equation of
K2012 [Eq. (20) of K2012, basically the Poisson equation for
the projected potential, and its extension to the magnetic case
given in Eq. (79)] by the argument of the source term on the
RHS. We have found that, as a practical matter, the correction
to the argument may not be neglected; doing so results in a
very inaccurate algorithm because Λ can change substantially
on this scale. The correction may be treated approximately,
however, as we now demonstrate.

Equation (23) is a second-order, elliptical, nonlinear par-
tial differential equation for the scalar function φ, which must
be solved numerically. It is not straightforwardly solvable in its
full nonlinear form. However, we may expand the right-hand
side to first order in ∇φ, obtaining

∇2φ(y)=Λ(y) − ∇Λ(y) · ∇φ(y). (24)

Multiplying Eq. (24) through by the integrating factor
exp(Λ(y)), we obtain

∇ ·
(
eΛ(y)∇φ(y)

)
=Λ(y)eΛ(y). (25)

Equation (25) is a steady-state diffusion equation, with an
inhomogeneous diffusion coefficient exp(Λ) and a source term
Λ exp(Λ). It may be solved by standard numerical methods, as
we demonstrate in Sec. V.

Once a solution has been obtained, it is straightforward to
recover the deflection field w = �∇φ. The projection integral of
the perpendicular magnetic field may then be obtained using
Eq. (16), ∫ rs

0
dz B⊥ (r(z, y))=

mcv
e(rs − ri)

∇φ(y)× z, (26)

where we have made our now usual approximation n(0) ≈ z at
the cost of a small error O(ω). The vector product with z in
effect rotates the vector ∇φ clockwise by 90◦.

We may use Eq. (26) to estimate the longitudinally
averaged transverse field,

B̄⊥ ≡
1
li

∫ rs

0
dz B⊥ (r(z, y)), (27)

which is obviously interesting information that is well-worth
extracting. In order to obtain this average, we clearly need
some way of estimating the longitudinal extent of the inter-
action region, li. Such an estimate may be available from
a separate diagnostic measurement of the plasma or from a
simulation. Alternatively, one may assume a rough isotropy,
implying that the transverse extent of the interaction region is
approximately the same as the longitudinal extent. Under this
assumption, one may use the radiographic data to estimate the
transverse extent and parlay this into the required estimate of li.

V. NUMERICAL VERIFICATION OF THE THEORY

In order to verify the theory developed thus far, we have
written a small ray-tracing code in Python and used it to sim-
ulate large ensembles of 14.7 MeV protons that are fired at
a magnetized region from a central source and recorded at a
screen. The code uses the ordinary differential equation (ODE)
integration routines from the Scipy23 library to integrate the
trajectory equations,

dn
ds
=

(
α

li

)
n×b, (28)

and
dx
ds
=n, (29)

as an ODE system. Here, s denotes the physical length along
each integral curve of n, and we measure the magnetic field
in units of some typical field strength Bt in the domain so that
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b ≡ B/Bt and the deflection angle α is the “typical” deflection
α = eBt li

mvc.
The ODE system is further augmented by the tracer

equations
d χ
ds
=

eri(rs − ri)
mcvrs

n · ∇ ×B, (30)

and
d
ds

(
liB̄⊥

)
=B⊥, (31)

which allow us to trace the current projection function χ and
the average perpendicular field B̄⊥ experienced by each proton,
so that we can map them to the screen and compare them
with the fluence contrastΛ and the reconstructed perpendicular
field, respectively, thus verifying the theory.

Protons are fired in a cone about the z axis, bounded by a
circular target in the x–y-plane at the location of the interaction
region. The cone is distorted by the Lorentz force, and the
protons’ locations and tracer data are recorded at z = rs. The
cone is then “collimated” to a square region, with boundaries
aligned with the x- and y-axes, such that the square is entirely
contained by the circular aperture of the cone.

We simulate point sources only, located at a distance
ri = 10 cm from the interaction region and rs = 100 cm from
the screen. The magnetic fields that we simulate have charac-
teristic field strengths of 2 × 104 G. The field configuration
that we simulate is a magnetic “ellipsoidal blob,” described in
K2012. The field is purely azimuthal about an arbitrary axis,
with field strength

Bφ(r ′, z′)=B0
r ′

a
exp

(
−

r ′2

a2
−

z′2

b2

)
, (32)

where r ′ is the perpendicular distance from the azimuthal sym-
metry axis and z′ is the distance along the axis. The axis may
be rotated arbitrarily with respect to the arrival direction of the
protons.

All images are binned into 128 × 128 pixels. The protons
are summed in each bin, while the current projection function
χ and the average transverse field liB̄⊥, integrated for each pro-
ton according to Eqs. (30) and (31), are averaged in each bin.

The pixelated proton counts are converted to fluence con-
trast Λ using Eq. (6). The field reconstruction is carried out
by solving Eq. (25) for φ numerically on the 128 × 128
image grid, by the slow but effective method of the unaccel-
erated Gauss-Seidel iteration (see Sec. 19.5 in the study of
Press24), which gives serviceable results for present purposes.
We assume the Dirichlet boundary conditions, that is, φ(y) = 0
at the image boundary. This scheme, which in effect solves
a linear problem of the form Ax = b, iteratively reduces the
residual |Ax � b|, where || refers to the 2-norm. We monitor the
normalized L2-norm of the residual, which is |Ax � b|/|b|, for
convergence.

The initial guess is a solution of the Poisson equation
obtained from Eq. (23) by setting the deflection ∇φ = 0 in the
argument ofΛ on the RHS. This solution can be obtained very
rapidly by fast Fourier transform (FFT) techniques but yields
a poor match to the true field, and we therefore only use it to
initialize the iterative scheme.

The deflections, and the field projection, are then recov-
ered using Eqs. (22) and (26).

The reconstruction code, named PRaLine (Proton
Radiography Linear reconstruction), is written in Python
and uses routines from the Scipy23 library. We have made
the PRaLine code publicly available through GitHub (Pub-
licly available at https://github.com/flash-center/PRaLine)
and the FLASH code release (publicly available at
https://flash.uchicago.edu). PRaLine is a simple, easy-to-use,
and efficient code for analyzing synthetic and experimental
proton radiographs.

A. An isolated blob

We begin with a simple, clean-room case: an ellipsoidal
blob, whose image is well-separated from the boundaries of
the image. The field strength B0 = 2× 104 G, and the azimuthal
symmetry axis of the blob is aligned with the z axis. The
blob has geometric parameters a = 0.03 cm, b = 0.02 cm
and is centered on the z axis (that is, down the middle of the
beam).

In this test, we fire 10 × 106 protons at the circular target,
and after collimation to the square image we have a yield of
6.1 × 106 protons.

In the top row of Fig. 2, we show the comparison of
the nonlinear fluence contrast Λ computed from the pixe-
lated data (left panel) to the current projection function χ,
integrated along proton trajectories (middle panel). The agree-
ment is visually very good. To perform a more quantitative
comparison, in the right hand panel, we show the normalized
difference (Λ � χ)/σΛ, where σΛ is the per-pixel Gaussian
error. This is a reasonable procedure, since the mean counts
per pixel in the simulation is 373 so that the pixel count dis-
tribution is well-described by Gaussian statistics. The error
σΛ for a pixel enclosing n protons is computed starting from
the Poisson error for the counts, σP =

√
n, and using the stan-

dard propagation of errors formula the functional relationship
between Λ and n. In terms of the average counts per bin, n0,
we have

σΛ =

√
n

n0
. (33)

We can see from the top-right panel of Fig. 2 that the current
projection function predicts the fluence contrast perfectly. The
fluctuations shown in the figure may further be summed in
quadrature to supply a χ2 value of 16 585.1 for 16 384 degrees
of freedom (DOF). This corresponds to a P-value of 13.4%,
indicating a perfectly acceptable (parameter-free) “fit” of the
model to the data.

In the lower panels of Fig. 2, we show analogous results
for the same simulations, using raw counts and the predicted
counts per pixel. Once again, the comparison is visually and
quantitatively excellent.

To explore the range of validity of the linear theory, we
repeat the exercise and gradually increase the field strength
to reach fluence contrasts with peak values of order unity and
larger (i.e., in the nonlinear regime). The results are reported
in Fig. 3, where we compare the nonlinear fluence contrasts Λ
[panels (a), (d), and (g)] to the corresponding current projection
functions χ[panels (b), (e), and (h)]. The first row corresponds
to χpeak = 1, the second row corresponds to χpeak = 1.4,
and the third row corresponds to χpeak = 1.7. The agreement

https://github.com/flash-center/PRaLine
https://flash.uchicago.edu
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FIG. 2. Comparison of theory and simulation, for an ellipsoidal blob aligned with the z axis. The top row compares the fluence contrast to the current projection
contrast, testing Eq. (19), whereas the bottom row compares the raw counts/bin to the predicted counts/bin. The left panels show the radiograph data, while the
middle panels show the prediction from the integration of Eq. (30). The right panels show the result of subtracting the middle-panel data from the corresponding
right-panel data and normalizing by the statistical error—the Poisson error

√
n for the bottom panels and the propagated error [Eq. (33)] for the top panels. The

fluctuations in the difference maps are consistent with the Gaussian noise.

FIG. 3. Same as the top row of Fig. 2 for increasing field strength and, therefore, fluence contrast. Panels [(a)-(c)] correspond to values of χpeak = 1, panels
[(d)-(f)] correspond to χpeak = 1.4, and panels [(g)-(i)] correspond to χpeak = 1.7.
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TABLE I. Characteristics of the isolated blob images and L2 norm between
actual and reconstructed magnetic fields.

χ (peak) Λ (RMS fluctuation) Λ (min) Λ (max) L2 norma

0.7b 7.8 × 10�2
�0.32 0.78 0.13

1.0c 8.7 × 10�2
�0.29 1.0 0.10

1.4c 1.0 × 10�1
�0.36 1.4 0.17

1.7c 1.1 × 10�1
�0.43 1.7 0.50

aAs mentioned in the text, in all the four cases, the algorithm converges with residual
errors of ∼0.5%. We note that the trend in the L2 norm is not monotonic; however, the
fluctuation is within that the 5% expected error due to the Poisson statistics for the mean
count rate per bin of 373.
bAs seen in the first row of Fig. 2.
cShown in Fig. 3.

between panels [(a) and (b)] and [(d) and (e)] is—visually—
fairly good, despite the large peak field-strength at the blob’s
center, which brings the fluence contrast into the nonlinear
regime locally (see also the first four columns of Table I).
Conversely, we see deviations from agreement on the first two
panels of the third row, whereΛ and χ values no longer match.
This is well-captured in the normalized difference (Λ � χ)/σΛ
[panels (c), (f), and (i)], where we note a gradual increase in
the error at the center of the domain.

The reconstruction of the field configuration for the
nominal case (Fig. 2) is displayed in the upper panels of Fig. 4.
We ran the iterative solver for 4000 iterations, at which point
the residual error was 0.51%. The top-left panel shows the
actual field projection liB̄⊥ from the integration of Eq. (31),
while the top-right panel shows the reconstructed field. The
colormap displays field strength on a logarithmic scale. We see

that the field reconstruction in the center of the image, near the
peak field-strength location, is very good, while a good deal
of unstructured noise appears in portions of the image where
the field strength is more than three orders of magnitude less
than the peak value. At the location of peak field strength, the
difference between actual and reconstructed field strengths is
2.0%. A quantitative comparison of the two images may be
performed using the L2 norm,

L2 ≡



∑
p∈pixels |B

(Reconstructed)
p − B(True)

p |2∑
p∈pixels |B

(True)
p |2



1/2

. (34)

For this reconstruction, we find L2 = 0.13. The discrepancy
is presumably a composite of the Poisson noise (itself around
5% per pixel), discretization error, and algorithmic error (the
algorithm terminated with a 0.53% residual).

The lower panels in Fig. 4 show the concomitant proton
deflections, as reconstructed by the algorithm. These figures
illustrate the expected focusing effect of the azimuthal field.
Again, the vector displacements maintain good accuracy in the
range from peak displacement length to displacements that are
about three orders of magnitude down from peak, after which
unstructured noise appears.

To visualize the accuracy of the magnetic field recon-
struction, we compare lineouts of the actual field projection
liB̄⊥ with the reconstructed field, for gradually increasing
field strengths. The lineouts shown in Fig. 5 are taken along
the x axis at Y = 0 cm and correspond to peak values of the
current projection function χpeak = 0.7 [panel (a)], χpeak = 1
[panel (b)], χpeak = 1.4 [panel (c)], and χpeak = 1.7

FIG. 4. Reconstruction of the field
configuration, for an ellipsoidal blob
aligned with the z axis. The colorbars
display the field strength on a loga-
rithmic scale that reflects the dynamic
range of the adjoining plot. (a) Actual
field projection liB̄⊥ from the integra-
tion of Eq. (31); (b) reconstructed field;
(c) actual proton deflections; (d) recon-
structed deflections.
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FIG. 5. Lineouts of the actual field pro-
jection liB̄⊥ (blue solid lines) and the
reconstructed field (red dashed lines),
taken at Y = 0 cm (see also Fig. 4).
As the magnetic field increases, bring-
ing the peak fluence contrast well into
the nonlinear regime, the reconstruction
fails to accurately represent the field.

[panel (d)]. The discrepancy between “true” and reconstructed
fields is again quantified using the L2 norm and is reported on
Table I. This exercise reveals that the linear reconstruction
algorithm performs adequately well even when the radiograph

has localized nonlinear contrasts [e.g., Figs. 2(a), 3(a),
and 3(d)], provided that the root mean square (RMS) con-
trast fluctuations remain small (see second column of Table I).
This seems to indicate that the RMS contrast fluctuations are a

FIG. 6. The same as Fig. 2 but for a superposition of two blobs of unequal field intensity.
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FIG. 7. The same as Fig. 4 but for a
superposition of two blobs of unequal
field intensity.

better indicator of the overall “linearity” of a given radiograph.
On the other hand, when non-linearity affects a substantial part
of the image, as is the case for χpeak = 1.7 [Fig. 3(g)], the
reconstruction fails to correctly capture the actual field projec-
tion [Fig. 5(d)] and the L2 norm becomes large (L2 = 0.5 for
χpeak = 1.7).

B. Two superposed blobs

We also simulate a more complex and less symmetric sit-
uation, by superposing two blobs of unequal strength—1 at
y = +0.025 cm, with B0 = 2 × 104 G, and 1 at y = �0.025 cm,
with B0 = 104 G. The geometric parameters of the blobs are
both identical to those in the previous example—a = 0.03 cm,
b = 0.02 cm. We again fire 10 × 106 protons at the system,
recovering 6.1 × 106 protons after collimation to the square
image.

Comparisons of fluence contrast to current projection, and
of counts per pixel to predicted counts per pixel, are displayed
in Fig. 6. The comparison is again both visually and quantita-
tively satisfactory. The difference of the fluence contrast and
current projection maps yields a χ2 = 16 448.4 for 16 384
DOF, a P-value of 36%. The model is quite clearly in good
agreement with the data.

The reconstruction is illustrated in Fig. 7. The iterative
solution residual after 4000 iterations is 0.60%. Again, the
visual impression of the reconstructed field is quite good,
with good structural fidelity within three orders of magni-
tude peak, for both magnetic field and for deflections. At
the peak field strength location, the difference between the

reconstructed and actual field strengths is 2.1%. The L2 norm
of the difference between the reconstructed and actual fields is
L2 = 0.13.

VI. EXPLORATION AND CHARACTERIZATION OF
RECONSTRUCTION ERRORS

In this section, we explore the character of some errors
that affect the analysis of radiographs. We are concerned here
not with the general subject of systematic errors in proton
radiography (a subject that received a very thorough treatment
in K2012) but rather with errors that limit the accuracy of the
magnetic field reconstruction.

We can identify several individual (although not nec-
essarily independent) sources of error that are relevant to
reconstruction:

Poisson noise: In the diffusion equation that we use for
reconstruction, Eq. (25), both the source term on the right-hand
side and the diffusion coefficient are estimated noisily from
binned proton counts. This Poisson noise is a source of error
whose principal effect is uncertainty that scales as n�1/2, where
n is the average number of protons per pixel. However, we shall
see that the Poisson noise can also be expected to produce other
indirect effects.

Discretization noise: The numerical solution is carried
out on a uniform grid in the image plane. Obviously, the level
of refinement of the grid has an impact on the accuracy of
the solution. In principle, the mesh should be fine enough to
resolve the smallest magnetic structures in the image. How-
ever, one may not simply refine the mesh indefinitely, as the
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reduced error due to discretization will eventually be balanced
by the Poisson noise as the average number of protons per pixel
drops and the form of the fluence contrast functionΛ becomes
noisily determined. Thus, there is a trade-off between the dis-
cretization noise and Poisson noise that should be optimized
somehow.

Edge effects: The solution of an elliptical partial dif-
ferential equation (PDE) such as Eq. (25) requires assump-
tions about boundary conditions. A natural choice is Dirich-
let boundary conditions (BC), with the function φ(y) → 0
at the edges of the radiograph. If the active region is well-
separated from the edges, then this choice may be expected
to give good results. If the active region is not well-separated
from the edges, this choice is not ideal and may at best be
regarded as an approximation of convenience. In this case,
it seems clear that the ability to recover detailed field struc-
ture is compromised. It is interesting to inquire whether one
may still infer the correct order of magnitude of |B⊥| in
these circumstances. It should also be noted that even for
an active region that is isolated from the boundaries, the
Poisson noise can furnish spurious activity near the bound-
ary. Thus, edge effects and Poisson noise effects are also
intertwined.

Obstruction effects: It is not uncommon in laser exper-
iments for some part of the physical structure of the target
to be illuminated by the beam of protons and thus to cast a
shadow on the image. Such a shadow, treated naively, would
appear to the present analysis as an enormous, proton-clearing
field of large strength and strong gradients. Evidently it is nec-
essary to characterize the importance of this kind of error.

One very crude fix is to replace the proton fluence in the
shadowed regions by the mean, zero-deflection proton fluence.
If the shadow encroaches on an image region of magnetic activ-
ity, this procedure will clearly spoil the reconstruction of the
detailed field structure. We may still hope to at least recover
the typical field strengths, at least approximately.

Later, we explore numerically some of the characteristics
of the Poisson noise, discretization noise, edge effects, and
obstruction effects.

A. Poisson noise effects

We explore the influence of the Poisson noise using the
first field simulated in Sec. V, which was displayed in Fig. 4.
We launch 108 protons at this field and produce datasets of
different fluences by truncating this simulation to 6× 105, 106,
3× 106, 6× 106, 107, 3× 107, 6× 107, and 108 protons. In each
case, after collimation to the square field-of-view (FOV), about
60% of the protons remain. We perform the reconstruction
procedure on each dataset, using the same 128 × 128 grid that
we used in Sec. V.

Three sample reconstructions are displayed in Fig. 8. They
correspond to the datasets with 6 × 105 protons (3.7 × 105

in the FOV), 6 × 107 protons (3.7 × 107 in the FOV), and
108 protons (6.1 × 107 in the FOV). The progressive degra-
dation of the reconstruction is evident and proceeds from the
regions of the weaker field (where the current integral is more
poorly determined) inwards to the regions of the stronger
field.

The lower-right panel shows the L2-norm of the difference
between the reconstructed field and the actual field, normalized

FIG. 8. Study of the effect of the Pois-
son noise. The field reconstruction fig-
ures display the field as reconstructed
for different numbers of protons in the
field of view—3.7 × 105 (a), 3.7 × 106

(b), and 6.1 × 107 (c). Panel (d) displays
the error of the reconstruction, measured
using the relative L2 norm of the dif-
ference between the reconstructed field
and the true field. The line shows the
expected n�1/2 scaling characteristic of
the Poisson noise errors. For these sim-
ulations, the Poisson noise error domi-
nates until n ≈ 107, at which point other
types of error take over the error budget.
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to the L2-norm of the actual field, as a function of number of
protons in the FOV. The error shows the expected Poisson
scaling of n�1/2 for n . 107. Evidently, for these simulations,
other types of error begin to dominate the error budget above
this proton fluence.

B. Discretization effects

As discussed earlier, the effect of grid spacing on recon-
struction accuracy is inextricably entwined with the effect of
the Poisson noise. For a fixed radiograph, the resolution can
only be increased up to the point where the per-pixel proton
counts begin to be so low that the Poisson noise begins to
degrade the reconstruction.

To explore the connection between the resolution and
Poisson noise, we conducted three series of reconstructions.
Each series comprised a set of six grids—32 × 32, 45 × 45,
64 × 64, 90 × 90, 128 × 128, and 181 × 181 grid points,
respectively (each contains twice as many points as the previ-
ous one). We performed this series of reconstructions on each
of three simulations of a blob. The three simulations differed
only in the number of protons—they contained 6.1 × 105,
2.4 × 106, and 6.1 × 106 protons in the square FOV, respec-
tively. The selected blob had parameters that differed from the
one in Sec. V A, in the single respect that a = 0.05 cm instead
of a = 0.03 cm. We expanded the blob laterally so as to give
the reconstructions a better chance to capture the field at the
low resolution end.

The results are displayed in Fig. 9. The blue circles show
the relative L2 norm of the difference between the recon-
structed field and the “true” field. The red crosses show the
relative L2 norm of the difference between two “adjacent”
resolutions (the crosses are therefore located between their
corresponding pairs of circles). The value of the latter mea-
sure is that it is available in experimental situations, when the
true field is not known.

The figure shows the very strong effect of proton flu-
ence on reconstruction accuracy. Depending on the proton
fluence, the reconstruction accuracy may be compromised
even at low resolutions, or alternatively it may continue to

improve up to the limit of our patience with the reconstruc-
tion algorithm (which has a time-to-solution that grows at
least as fast as the number of grid points). The difference
between adjacent resolutions appears to furnish a reasonable
rough indicator of optimality, in the sense that in the low-
fluence case (left panel) the crosses begin to rise at about
the time when the departure from the true field begins to be
significant.

C. Edge effects

To illustrate the influence of boundary effects on field
reconstruction, we performed a simulation using a blob with
the same parameters as the ones used in Sec. V A but displaced
so that a substantial part of the previously reconstructed field
now overlaps the right edge of the image. To do this, we dis-
place the interaction region to the right by 1.1li. We shoot 107

protons at the target as before and again recover about 6 × 106

protons in the collimated square image.
The resulting reconstruction is displayed in Fig. 10. The

comparison with the single isolated blob of Sec. V A is
instructive. In this case, the detailed reconstruction accuracy
is degraded—the L2 norm of the difference between actual
and reconstructed fields has increased to 29% (from 13%),
and the difference between actual and reconstructed field
strengths at the location of peak field strength has increased
to 13.5% (from 2.0%). On the other hand, the structure of
the field is still recognizable: the reconstructed contours are
still clearly concentric circles to a radius of 0.5 cm from the
center point of the field, which was also the case in Fig. 4. It
appears, then, that when the image of the interaction region
encroaches on the edge of the radiograph, one may still hope
to infer field strength peak magnitudes and field structure to
some useful degree, despite the inexactly obeyed boundary
conditions.

D. Obstruction effects

We study the effect of obstruction on field reconstruc-
tion using a variation of the two superposed blob simulation

FIG. 9. Resolution study: The three figures show relative L2 norm measures for three different proton fluences. (a) 6.1 × 105 protons in the square FOV;
(b) 2.4 × 106 protons in FOV; (c) 6.1 × 106 protons in FOV. The blue dots show the L2 measure of departure of the reconstructed field from the true field, at each
of a number of grid resolutions (number of mesh points per dimension). The red crosses show the L2 difference between the reconstructions corresponding to
the two adjoining resolutions. The turnover point in the crosses can serve as an indicator of “optimal” resolution in experimental work, where the “true” field is
not available for comparison.
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FIG. 10. Reconstructed field configu-
ration for a blob situated near the edge
of the imaged region. The colorbars dis-
play the field strength on a logarithmic
scale that reflects the dynamic range of
the adjoining plot.

described in Sec. V B, where we summarily remove the
protons in a vertical strip near the blob and replace the
removed fluences by the mean, zero-deflection fluence for
the image. We do this for obstruction strips of two different
widths.

The results are shown in Fig. 11. The left panel of this
figure shows the result of reconstruction using unobstructed
data and is therefore the same as the reconstruction in Fig. 7.
The middle panel shows the reconstruction that is obtained
after obstructing the data in the vertical strip 0.1 < x < 0.2,
while the right panel shows the reconstruction obtained after
obstructing data in the strip 0.1 < x < 0.5.

What emerges from this study is that the field recon-
struction can be remarkably robust to obstruction effects.
In both obstructed cases, the typical field intensities are
largely unaffected by the obstruction, and the morphology
is not wildly distorted. This is, we believe, due to the non-
local nature of the reconstruction, which can partly “heal”
the data corruption, interpolating to preserve the assump-
tion of continuity and differentiability of the field that is
built in to the reconstruction procedure. Naturally, one would
expect the fidelity of the reconstruction to be more seri-
ously compromised as the obstruction becomes more serious.
It is also likely that the unrealistic simplicity of the two-
blob test case is helpful in aiding reconstruction. Nonethe-
less, this test case offers some reason to place some lim-
ited reliance on field strengths and morphologies inferred

through the reconstruction procedure, even in the case of
obstructed data.

VII. PROTON RADIOGRAPHY OF
ISOTROPIC-HOMOGENEOUS TURBULENT FIELDS

In experimental applications that result in turbulent
flows, the direct reconstruction of the transverse magnetic
field is not necessarily desirable. Of greater interest is the
spectrum of the turbulent magnetic field. While the spec-
trum is in principle recoverable from the reconstructed
field, such a procedure would unnecessarily entangle the
inferred spectrum with some of the reconstruction errors
as discussed earlier (i.e., edge and obstruction effects). As
we will now demonstrate, under the assumptions that the
field has an approximately uniform and isotropic spec-
trum, the spectrum itself is directly and robustly recoverable
from the radiographic image without performing the field
reconstruction.

Our starting point is Eq. (19), which we rewrite slightly as

Λ(x⊥)=
eri(rs − ri)

mcvrs
ẑ ·

∫ ri+li/2

ri−li/2
dz∇×B(r(z, x⊥)), (35)

where we accept to incur an error of order O(ω) by replacing
n(0) with ẑ in the inner product and one of order O(λ) by
separating the dependence on z from that on x⊥ in the argument

FIG. 11. Obstruction study. The three figures show the reconstructed magnetic field for the two-blob test case, similar to Fig. 7, but in each case with a strip of
proton data removed and replaced by the overall average proton flux. (a) No obstruction (same as in Fig. 7). (b) Data obstructed in the vertical strip 0.1 < x < 0.2.
(c) Data obstructed in the vertical strip 0.1 < x < 0.5.
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of the integrand, setting

r(z, x⊥)≡ zẑ +
ri

rs
x⊥. (36)

In Eq. (35), we have also changed the limits of integration
to include only the region in which the magnetic field is
appreciable. The reason for this change will be made apparent
later.

Note also that in Eq. (35) we are neglecting the small shift
in the argument ofΛ that was so important to the reconstruction
algorithm [compare Eq. (21)]. This is permissible at the cost
of stipulating that the spectrum obtained thereby cannot be
trusted at scales close to, or smaller than, the angular deflection
scale αli. At longer scales, the spectrum should be unaffected
by this approximation.

A. The two-point correlation function
and the spectrum

We define the two-point correlation function for the
radiographic image as follows:

η(��x′⊥ − x⊥��)≡
〈
Λ(x⊥)Λ(x′⊥)

〉
, (37)

where the expectation value 〈〉 is an ensemble average. The
fact that η

(��x′⊥ − x⊥��
)

depends only on the distance between
x′⊥ and x⊥ is a consequence of the assumed isotropy and
homogeneity of the stochastic field B, as will be shortly
evident.

Inserting Eq. (35) into Eq. (37), we get

〈
Λ(x⊥)Λ(x′⊥)

〉
=

e2r2
i (rs − ri)2

m2c2v2r2
s

ε lmnε l′m′n′ ẑl ẑl′

×

∫ ri+li+1/2

ri−li/2
dz

∫ r1+li/2

ri−li/2
dz′

∂

∂rm

∂

∂r ′m′

〈
Bn (r(z, x⊥)) Bn′

(
r ( z′, x′⊥

)〉
.

(38)

The correlation expression in the integrand defines an
isotropic tensor〈

Bn (x) Bn′
(
x′

)〉
≡Qnn′

(
x − x′

)
, (39)

that is analogous to the classic incompressible velocity cor-
relation tensor, since ∇·B = 0 is analogous to the incom-
pressibility condition for velocity. Following the develop-
ment in Secs. 6.2 and 8.1 of the study of Davidson,25 we
write

Qnn′(a)=
∫

d3k eik ·a
Φnn′(k), (40)

where the isotropic tensor Φnn′(k) has the form

Φnn′(k)=
EB(k)

k2

(
δnn′ − knkn′/k

2
)
. (41)

The quantity EB(k) is the energy spectrum of the magnetic
field and satisfies the relation∫ ∞

0
dk EB(k)=

1
8π

〈
B2

〉
, (42)

which is obtainable by setting a = 0 and contracting the indices
in Eq. (40).

Inserting Eqs. (39)–(41) into Eq. (38), we obtain〈
Λ(x⊥)Λ(x′⊥)

〉
=

e2r2
i (rs − ri)2

m2c2v2r2
s

ε lmnε l′m′n′ ẑl ẑl′

×

∫ ri+li+1/2

ri−li/2
dz

∫ z1+li/2

ri−li/2
dz′∫

d3k eik ·(r(z,x⊥)−r(z′,x′⊥))

× kmkm′
EB(k)

k2

(
δnn′ − knkn′/k

2
)
. (43)

At this point, it is possible to clarify why it was important
to adopt limits of z-integration that are confined to the inter-
action region. The magnetic field is confined to the interaction
region, and we were to Fourier-transform B instead of Q, the
various complex phases of the transform of B would contain
the information necessary to respect this confinement. How-
ever, the spectrum EB(k) that appears in the Fourier transform
of Q knows nothing of those phases. It knows that there is
an integral scale cutoff k0 & 2π/li, but it represents a model
of uniform, isotropic turbulence in which all space is per-
vaded by a turbulent B-field with integral-scale cutoff k0. The
restriction on the limits of integration in z in effect prevents
that model from incorporating proton deflections from regions
where physically the field is zero.

The term knkn′ in the integrand of Eq. (43) vanishes, since
ε lmnkmkn = 0. We may then use the decomposition k=k⊥+kzẑ
and the Levi-Civita tensor’s contraction identity

ε lmnε l′m′n′δnn′ = δll′δmm′ − δlm′δml′ (44)

to obtain〈
Λ(x⊥)Λ(x′⊥)

〉
=

e2r2
i (rs − ri)2

m2c2v2r2
s

∫ ∞
−∞

dkz
4 sin2(kzli/2)

k2
z

×

∫
d2k⊥ei(ri/rs)k⊥·(x⊥−x′⊥)

EB

(
[k2
⊥ + k2

z ]1/2
)

k2
⊥

k2
⊥ + k2

z
. (45)

As a function of kz. The integrand term 4 sin2(kzli/2)/k2
z

is sharply peaked near kz = 0 and has a width 1/li. Compared
to the k scales present in EB(k), it is well-approximated by a
δ-function,

4 sin2(kzli/2)

k2
z

≈ 2πliδ(kz). (46)

Using this in Eq. (45), we obtain〈
Λ(x⊥)Λ(x′⊥)

〉
=

2πe2r2
i (rs − ri)2li

m2c2v2r2
s

×

∫
d2k⊥ ei(ri/rs)k⊥ ·(x⊥−x′⊥)EB(k⊥)

=
2πe2(rs − ri)2li

m2c2v2

×

∫
d2q⊥ eiq⊥·(x⊥−x′⊥)EB

(
rs

ri
q⊥

)
, (47)

where we have defined the screen-plane wave vector
q⊥ ≡ ri

rs k⊥. Since EB(k⊥) depends only on the magnitude of
k⊥, we see that the autocorrelation indeed only depends on
the magnitude ��x′⊥ − x⊥��, as previously asserted.
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Note that we had not restricted the z integration range,
rather leaving it as 0 < z < zs, we would have obtained a
similar result but scaled up by rs/li [because instead of the
RHS of Eq. (46), we would have found an expression that is
approximately 2πrsδ(kz)]. Thus, the predicted contrast spec-
trum would have too large an amplitude by a factor rs/li, which
would correspond to deflections suffered in consequence of a
turbulent field pervading the entire region between the implo-
sion capsule and the screen, rather than one confined to a small
interaction region.

We Fourier-transform Eq. (47) with respect to both
arguments, obtaining〈
Λ̃(p⊥)Λ̃(p′⊥)∗

〉
=

2πe2(rs − ri)2li
m2c2v2

δ2(p⊥ − p′⊥)EB

(
rs

ri
p⊥

)
,

(48)

where we have defined the Fourier transform of the contrast
fluctuation map,

Λ̃(p⊥)≡ (2π)−2
∫

d2x⊥e−ip⊥ ·x⊥Λ(x⊥). (49)

The δ-function in Eq. (48) may be disposed of by not-
ing that the contrast fluctuation map Λ(x⊥) is available as a
discretized array on a mesh of cells, rather than as a continu-
ous function, and its Fourier transform is necessarily a Discrete
Fourier Transform (DFT). If the mesh on the screen is an N ×N
evenly spaced array over a square of lateral dimension L, the
DFT will produce a complex array of transform values Λ̂(n),
where n are 2-dimensional mode vectors whose components
are integers, n = [nx, ny]. n are related to the wave vectors p⊥
by p⊥ = 2π

L n. Λ̂(n) are then related to Λ̃(p⊥) by averaging the
latter over the cell in p⊥-space corresponding to the mode n.
That is to say,

Λ̂(n)=

(
2π
L

)−2 ∫
Cell n

d2p⊥ Λ̃(p⊥), (50)

where the integral is over the p⊥-space square cell of side 2π/L
centered at 2π

L n.
We therefore average the dependence of Eq. (49) on p⊥,

p′⊥ over cells n, n′, respectively. This process duly removes
the δ-function, leaving the result〈

Λ̂(n)Λ̂(n′)∗
〉
=

e2(rs − ri)2liL2

2πm2c2v2
δnn′EB

(
rs

ri

2π
L
|n|

)
. (51)

The final result for the turbulence spectrum is then

EB

(
rs

ri

2π
L
|n|

)
=

2πm2c2v2

e2(rs − ri)2liL2

〈
Λ̂(n)Λ̂(n)∗

〉
. (52)

In a practical computation, the ensemble average in Eq. (52)
may be replaced by a rotational average over cells in n-space,
binning |n| to suit one’s convenience.

It is a noteworthy feature of Eq. (52) that the factor rs
ri

p⊥
in the argument of EB expresses the expected stretching of
wavelengths by the divergence of the proton rays on their way
from the interaction region to the screen.

Note also that according to Eq. (52), we again require an
estimate of the longitudinal extent of the interaction region
li in order to obtain the amplitude of the spectrum EB. The
discussion of the availability of such an estimate of li was
given at the end of Sec. IV.

B. Numerical verification with a Gaussian field

We verify Eq. (52) by means of a simulation in which
protons are fired at a domain containing a Gaussian random
magnetic field of a known spectrum. Such a field does not
really represent a realistic magnetic turbulence distribution,
of course, since turbulence is well-known to be non-Gaussian
(see Ref. 25, pp. 99-103, for example). This is not an issue
here, since we merely wish to confirm that we can successfully
recover the two-point spectrum of a homogeneous-isotropic
distribution, irrespective of what the other moments of the dis-
tribution may be, so we are free to choose a Gaussian random
field on grounds of simplicity.

The optical setup used in this test is ri = 20 cm, rs = 100
cm, and li = 0.1 cm. Protons energies are monochromatic, at
14.7 MeV, and the protons are emitted from a point source at
the origin.

The simulated spectrum is a truncated power-law with the
following form:

EB(k)=



〈B2〉
8π

α+1
kα+1

2 −kα+1
1

kα : k1 < k < k2

0 : otherwise.
(53)

This form allows us to specify the normalization in terms of
the mean magnetic energy B2/8π, according to Eq. (42). We
parametrize the spectral cutoffs in terms of discrete modes
n1 and n2, with k1 =

2π
li

n1, k2 =
2π
li

n2. In our simulations, we

chose 〈B2〉1/2 = 5× 102 G, α = �3.5, n1 = 2, and n2 = 40. These
parameters, together with the optical system parameters rs, ri

above, result in expected contrast fluctuations at the screen of
about 0.1.

We generate the field in a 128 × 128 × 128 mesh of cells
in a cubic domain. We start out in the Fourier space, randomly
drawing the (complex) components of the Fourier-transformed
vector potential a(k) in each k-space cell independently from
a zero-mean normal distribution. The variance of the distribu-
tion is chosen to yield the desired spectrum EB. The reality
constraint a(k)∗ = a(�k) is enforced by drawing samples only
in the hemisphere kx > 0 and copying the complex conju-
gate of the field in this hemisphere to the reflected point in the
opposite hemisphere. The resulting vector field is then Fourier-
transformed to the real domain to obtain A(x), and the discrete
curl is taken to yield the final magnetic field, B = ∇ × A.

We simulate firing 5 × 106 protons through this setup, in
a cone of radius 0.1 cm at r = ri. The radiographic results
are displayed in Fig. 12, which shows a square region of
data entirely contained within the image of the interaction
region.

To obtain the spectrum, we proceed as indicated in the dis-
cussion following Eq. (52). We bin the region imaged in Fig. 12
into a 128 × 128 array of cells, computing the contrast map
in each cell, and perform an FFT on the result to estimate
Λ̂(n). We bin the radial wavenumber n = |n| into equally
spaced logarithmic bins and average the contributions in each
bin to perform a circular average. Then, using Eq. (52), we
estimate EB.

The result of this computation is displayed in Fig. 13. The
left panel of this figure shows the result of the analysis just
described. The right panel shows the result of repeating the
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FIG. 12. Radiographic results of simulation with the Gaussian random field. The images are of a square of data entirely contained within the image of the
interaction region.

analysis on the current projection function χ, which, as we
have seen, predicts the fluence contrast. We note that χ is not
an experimental observable (as is the fluence contrastΛ) and is
recovered via the tracer Eq. (30) by the protons as they traverse
the domain. As such, the spectral analysis on χ is expected
to always reproduce the correct spectrum. From Fig. 13(a),
it is clear that at low frequency, the method returns the cor-
rect spectrum—both the low-frequency cutoff k1 and the
spectral slope are correctly recovered. At high frequency,
we see a leveling-off of the spectrum in the contrast data
that has no counterpart in the spectrum inferred from χ

[Fig. 13(b)]. The white-noise spectrum due to the Poisson

statistics dominates at large k, producing the leveling-off of
the magnetic spectrum.

This observation points to a practical necessity in imple-
menting this algorithm: it is necessary to optimize the trade-off
between spectral resolution and the Poisson noise, by choos-
ing the size of the image binning mesh carefully. Too high
resolution can lead to low counts-per-bin, and therefore exces-
sive noise, while too low resolution leads to the inability to
probe high frequencies. This trade-off must be resolved empir-
ically in the analysis of radiographs, on a case-by-case basis.
These considerations are analogous to the ones described in
Sec. V B.

FIG. 13. Recovered spectra using Eq. (52). In both panels, the highlighted region is the range between the spectral cutoffs k1 and k2, while the blue line represents
the input spectrum that was used to generate the field according to Eq. (53). (a) Spectrum obtained using the binned contrast data. (b) Spectrum obtained repeating
the procedure but using the current projection function χ (which predicts the contrast) instead. The high-frequency differences between the two spectra are
explained by the Poisson noise.
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Another high-frequency effect that is to be expected in real
data, but that we do not simulate here, is that the finite size of the
implosion capsule must necessarily produce a high-frequency
cutoff in the measured spectrum. The reason is that a finite
capsule size s blurs the image of every point in the interaction
region by an angular blurring s/ri and hence by a linear blurring
length s(rs � ri)/ri in the image. This corresponds to a length
scale in the interaction region of λs = s(rs � ri)/ri × ri/rs =
s(rs � ri)/rs. This is the limit to which we may expect to
resolve any structure in the spectrum, which should therefore
be expected to contain a high-frequency cutoff at wavenumber
ks = 2π/λs. Naturally, for this cutoff to be visible, it must occur
at wavenumbers k below the advent of the white noise plateau
as discussed earlier.

In order to gauge the regime of validity of this spectral
analysis, we repeat the test problem three more times, scaling
up the Gaussian random magnetic field by factors of 2, 4, and 6.
It should be noted that we do not consider a new random real-
ization of the field but, rather, a scaled version of the same
realization. The resulting fluence contrast, current projection
contrast, and normalized difference for the scaled field cases
are shown in Fig. 14, equivalent to the first row of Fig. 12. In
the new radiographs, the peak predicted values of χ increase
from χpeak = 0.3 [Fig. 12(b)] to χpeak = 0.6 [Fig. 14(b)],
χpeak = 1.1 [Fig. 14(e)], and χpeak = 1.7 [Fig. 14(h)], thus

bringing the fluence contrast well into the nonlinear regime.
The RMS fluctuations of the image contrast increase from 0.11
to 0.25, 0.40, and 0.77, respectively. As in the isolated blob
problem, we see that χ becomes a progressively worse predic-
tor ofΛ and the normalized error values increase considerably,
more so where the contrasts are large. Nonetheless, the current
projection contrast still captures the general morphology and
features of the fluence contrast.

For each case, we construct the magnetic energy spec-
tra utilizing the algorithm described previously and Eq. (52),
applied to either the fluence contrast or the current projection
function. The spectra are displayed in Fig. 15. Panels (a) and
(d) correspond to the χpeak = 0.6 case, panels (b) and (e) corre-
spond to the χpeak = 1.1 case, and panels (c) and (f) correspond
to the χpeak = 1.7 case. The top panels are the result of the spec-
tral analysis performed on the fluence contrast, while the bot-
tom panels on the current projection function. The fluence con-
trast spectral plots [Figs. 15(a)–15(c)] show that the fluctuation
spectrum departs from the model spectrum starting at high
wavenumbers, eventually peeling off entirely. Unlike the direct
reconstruction results for the isolated blob [e.g., Fig. 5(d)],
spectral reconstruction appears to overestimate the field
strength. On the other hand, the current projection spectra
[Figs. 15(d)–15(f)] continue to predict the model spectrum
well. This is not surprising since they are constructed from

FIG. 14. Same as the first row of Fig. 12 for increasing field strength. The magnetic field realization remains the same but is scaled up by a factor of 2 for the
first row, a factor of 4 for the second and a factor of 6 for the third. The corresponding peak values of the current projection function are χpeak = 0.6, 1.1, and 1.7,
respectively.
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FIG. 15. Same as Fig. 13 for increasing field values. The magnetic field was scaled up by a factor of 2 for panels (a) and (d), a factor of 4 for panels (b) and (e),
and a factor of 6 for panels (c) and (f).

the actual field variables. We conclude that the failure of the
spectral analysis in the nonlinear regime is evidently a direct
consequence of the failure of the current projection to predict
the contrast fluctuations.

To recover the path integrated magnetic field, we solve
once more Eq. (25) assuming, as in the isolated blob test prob-
lem, the Dirichlet boundary conditions at the image boundary.
This choice is arguably expedient but poor, since the mag-
netic field now fills the 128 × 128 × 128 cubic computational
domain and therefore the fluence contrast is not negligible at
the edges of the radiograph [Fig. 12(a)]. In Sec. VI C we saw
how this can have deleterious effects in the accuracy of the

reconstruction. Artificial jumps in the fluence contrast at the
boundaries must be interpreted by the algorithm as the result
of large deflections, i.e., artificially strong MHD currents. The
problem is further compounded by the non-local nature of the
reconstruction method; the built-in assumption of continuity
and differentiability of the magnetic field that “healed” the
data corruption in Sec. VI D will also result in the propagation
of boundary condition errors into the domain solution. These
effects increase as the RMS fluctuations of the fluence contrast
increase.

The lineouts of the reconstructed field are given in Fig. 16,
where we compare the actual field projection liB̄⊥ (blue solid

FIG. 16. Lineouts of the actual field projection liB̄⊥ (blue solid lines) and the reconstructed field (red dashed lines), taken at Y = 0 cm, for two Gaussian random
field realizations: (a) the original case of Fig. 12 with χpeak = 0.3, (b) scaled-up by a factor of 2 with χpeak = 0.6, and (c) scaled-up by a factor of 4 with
χpeak = 1.1.
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line) with the reconstructed field (red dashed line), for increas-
ing field strengths. The lineouts are taken along the X axis at
Y = 0 cm and correspond to peak values of the current projec-
tion function χpeak = 0.3 [panel (a)], χpeak = 0.6 [panel (b)],
and χpeak = 1.1 [panel (c)]. The reconstruction algorithm failed
to converge for the strongest field case with χpeak = 1.7 and
is therefore not shown. For the nominal case, the reconstruc-
tion is able to capture the field’s characteristic length scales
and features [Fig. 16(a)]. The difference between true and
reconstructed fields rapidly increases as the RMS values of
the fluence contrast become larger [Figs. 16(b) and 16(c)].
This is a result of the current projection function no longer
being a good predictor of the fluence contrast in the nonlin-
ear regime plus the use of the Dirichlet boundary conditions
in conjunction with the non-local nature of the reconstruction
method.

VIII. ON THE NONLINEAR THEORY OF PROTON
RADIOGRAPHY

An important missing capability that remains in the anal-
ysis of proton radiographs is the ability to reconstruct the
transverse magnetic field in the nonlinear regime (order unity
contrast) in a manner analogous to the linear reconstruction as
discussed earlier. From an experimental point of view, this is an
important topic to address, since radiographs of laser plasmas
can show evidence of nonlinear contrasts (see, for example,
Fig. 6 of Ref. 26). In these cases, the linear theory can provide
at best rough estimates of field strength and morphology.

Presentation of a complete theory of nonlinear radiogra-
phy is beyond the scope of this work. However, we wish to
outline an approach that can be used to reconstruct the pro-
jected perpendicular magnetic field in the nonlinear regime
(i.e., the large image contrast regime). We successfully pursue
this method—including a complete discussion and numerical
verification of it—in a subsequent paper.22

The starting point for the approach we wish to describe is
the nonlinear equation of intensity at the screen. This equation,
which replaces the linear regime Eq. (4), is given by Eq. (6) of
K2012, which we write here as

Ψ
(
x(0) + w

)
× det

�����
∂(x(0) + w)

∂x(0)

�����
=ψ0. (54)

Here, as before, Ψ is the measured fluence on the radiograph,
ψ0 is the fluence that would be measured in the absence of any
deflection, x(0) is the location on the screen where a proton
would land in the absence of deflection, and w is the lateral
deflection.

Now, even in the nonlinear regime, it remains the case that
w = �∇φ, as was discussed in Sec. IV—this is essentially a
consequence of the irrotationality of the magnetic field. If we
define the function

ζ ≡
1
2
|x(0) |2 − φ, (55)

then we may write Eq. (54) in the following form:

Ψ (∇ζ) × det ���D
2ζ

���=ψ0, (56)

where D2ζ is the matrix of second derivatives of ζ , that is,
[D2ζ]ij = ∂

2ζ/∂x(0)
i ∂x(0)

j .

As intractable as this equation appears at first glance, it
turns out to be an example of a very famous class of equations:
it is the Monge-Ampère equation, first discussed by the French
mathematicians Gaspard Monge (in 1784) and André-Marie
Ampère (in 1820). It is an equation of central importance in
the subject of Monge-Kantorovich optimal mass transporta-
tion,27 and it crops up in fields as diverse as differential
geometry,28 meteorology,29 cosmology,30 medical imaging,31

economics,32 and many others. For this reason, the properties
of this equation have been studied in depth.

The equation arises in its archetypal form in optimal trans-
portation problems, wherein a fixed given distribution of mass
in some space is to be mapped to a second fixed distribution
of mass, by means of a mapping on the space that minimizes
some cost function. In symbols (if not in formal mathemat-
ics), the initial distribution µ0, a measure on a space Ω, is to
be mapped to a new, given distribution µ1 on Ω by means of a
“transport plan,” a diffeomorphism y : Ω→ Ω so that µ1 and
µ2 are related by the Jacobian of y(x). Obviously, there are
many possible transportation plans that can effect the required
mapping, but the one of interest is the one that minimizes a
certain cost function.

Suppose that the distributions µ0, µ1 are described by
densities P1(x)dx, P2(x)dx, respectively. P1 and P2 are related
by

P2(y) det
�����
∂y
∂x

�����
=P1(x). (57)

If the cost function to be minimized is the Kantorovich-
Wasserstein L2 distance

d2(P1, P2, y)≡
∫
Ω

dx P1(x)(y(x) − x)2, (58)

then it has been shown33,34 that the cost-minimizing diffeo-
morphism y(x) is the gradient of a convex function ζ , that
is,

y(x)=∇ζ(x). (59)

Inserting Eq. (59) into Eq. (57), it then follows that ζ(x) is
the solution of a Monge-Ampère equation. It has been further
shown that this solution is unique.

There is therefore a curious connection between the non-
linear radiography reconstruction problem and the optimal
transportation problem. Whereas in the latter, it is the case
that the L2-cost minimizing optimal diffeomorphism is the
gradient of the unique solution of the Monge-Ampere equa-
tion, in the radiography problem, we know that the map-
ping between the no-deflection fluence distribution and the
observed distribution is necessarily the gradient of some func-
tion (by the irrotationality of the magnetic field) and that
therefore the unique solution of the Monge-Ampère equa-
tion (56) is the optimal—by the L2 cost metric—transport
plan between the uniform fluence density ψ0 and the observed
density Ψ.

In other words, in our current notation, given the cost
function

d2(Ψ,ψ0, w)=ψ0

∫
d2x |w(x)|2, (60)

optimal transportation theory tells us that minimizing Eq. (60)
with respect to the set of deflections w(x) that transform ψ0 to



123507-20 Graziani et al. Rev. Sci. Instrum. 88, 123507 (2017)

Ψ(x) leads to an irrotational vector field w(x) = �∇φ(x) and
hence to a solution of Eq. (56).

This connection creates an opportunity. There are a num-
ber of numerical algorithms in the literature31,35–37 that have
been successfully used to solve the optimal transportation
problem with L2 cost in various contexts. The successful appli-
cation of any such algorithm to the radiographic inversion
problem would produce the lateral deviations w and hence,
by Eq. (16), the average transverse magnetic field. In a subse-
quent paper, we successfully pursue this method and provide
a detailed and complete discussion that includes applications
and numerical verification.22

IX. LIMITATIONS OF CAUSTIC ANALYSIS

The theory developed in this article assumes linear con-
trast departures, which means small field gradients and, par-
ticularly, small currents. As µ approaches order unity values
and, consequently, the image contrast becomes of order unity,
we saw in Sec. VIII that a different approach is warranted
that involves the solution of the Monge-Ampère equation (56).
In these regimes, there is no strong focusing, and the caustic
structures examined and described in K2012 cannot develop
in radiographic images. These are only expected for µ > 1,
when the proton trajectories cross.22 Nonetheless, it is note-
worthy that high-definition structures can develop in images,
even in the absence of caustic structure. In fact it is apparent
that the appearance of sharp features in a proton radiograph
cannot be taken as evidence of caustic formation. Furthermore,
as we have seen the essential tool for understanding radio-
graphic structure is not caustic structure but rather the MHD
current.

As an aid to the discussion, consider the “wire-in-a-beer-
can” field configuration, wherein a uniform current flows along
a central wire of finite radius, and the return current flows back
along the finite-thickness walls of the can. The wire diameter
is r0, the can diameter is r1, the thickness of the can walls is
δ, and the height of the can is z0. The net current in the central
wire is I. We assume the current density is uniform in the wire
and in the can’s vertical side walls.

The magnetic field B is purely azimuthal, B = Bφeφ , and
we assume azimuthal symmetry so that∇ ·B = r�1∂Bφ/∂φ = 0.

We choose a factorized form for Bφ ,

Bφ = f (r)g(z), (61)

where r is the cylindrical radius coordinate and z is cylindrical
height coordinate.

The z-dependence of the field simply limits the field to
the can vertically,

g(z)=



1, |z | < z0/2,
1 − |z |−z0/2

δ , z0/2 ≤ |z | < z0/2 + δ,
0, |z | ≥ z0/2 + δ.

(62)

The function f (r) is set by the can/wire geometry
described earlier and by Ampere’s law,

Bφ =
2i(r)

cr
, (63)

where i(r) is the total net current along the z-direction inside
radius r. By considering the region |z|< z0/2, we therefore have

f (r)=




2Ir

cr 2
0

, r < r0;

2I
cr

, r0 ≤ r < r1;

2I
cri

(
1 −

r − ri

δ

)
, r1 ≤ r < r1 + δ;

0, r ≥ ri + δ.

(64)

This field configuration yields a uniform current density in the
wire and in the vertical walls of the can. The current J bends
to flow around the end-caps from the wire to the side walls
and back. The azimuthal magnetic field strength rises linearly
from the center to the edge of the wire, then declines as r�1 in
the interior of the can, and finally drops linearly to zero in the
outer wall of the can.

Figure 17 gives two simulated (with 5 × 106 protons)
radiographic images of “wire-in-a-beer-can” simulations. The
current projection is negative in the central wire, positive in
the walls. In the left panel, the parameters are chosen so that
the fluctuations are linear—the contrast is everywhere less
than about 0.3. In the right panel, the field intensity has been
increased to push the contrasts well into the nonlinear regime
so that the central region is nearly cleared of protons and the
walls have more than double the mean count rate.

There is no question of any caustic structure in the first
image, since the contrasts are too small for the necessary non-
linear structure to be present. In the second image, it is likely
that a caustic has developed somewhere in the outer ring, given
the high contrast there. Nonetheless, we see very similar mor-
phology in the two cases. This illustrates the point that caustic

FIG. 17. “Wire in a beer can” simula-
tion. A uniform current runs along a cen-
tral wire, with the return current flow-
ing back down the walls of the can. (a)
Linear contrast regime. (b) Nonlinear
contrast regime.
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formation is in no sense necessary for the formation of sharp
radiographic structure. We conclude that it is not in general
correct to identify high-definition features in radiographs with
caustic structures, in an effort to infer magnetic structure using
the formulae in K2012 to relate such structure to image caus-
tics. At a minimum, one should verify the necessary condition
for caustic formation—large contrast fluctuations.

The importance of using MHD current to interpret radio-
graphs can be illustrated if we hypothesize interpretations
of the field configuration that resulted in the radiographs of
Fig. 17, which in prima facie may appear intuitive but lead
to incorrect inferences. In particular, it would be incorrect to
associate the peak field intensity with the peak count rate, since
according to Eq. (64) the field strength peaks at the surface of
the wire, rather than at the side walls of the can. A somewhat
less naive interpretation would be to associate field gradients
only with the interiors of the images of the wire (the central
hole) and the wall (the outer annulus). This would also be
incorrect; however, since according to Eq. (64), |df /dr| is also
nonzero in the interior of the can (r0 ≤ r < r1), where there
is no image contrast at all! Furthermore, on the basis of either
image, one might naively ascribe the same (zero) field to the
exterior of the can (r > r1 + δ) as to the interior (r0 ≤ r < r1),
since the images of both regions are uniform-no-contrast.
In fact, the interior of the can contains a non-zero irrotational
field, while the exterior field is zero.

All these features are perfectly intelligible when the cur-
rent is considered. The current along the proton beam direc-
tion is negative in the central wire, positive in the walls, and
zero elsewhere. That statement gives a completely satisfactory
and concise description of both the linear and the nonlinear
image.

A further limitation of a caustic-geared analysis is that
it would lead the analyst to emphasize the bright annulus
of the wall, where the strong focusing occurs, over the hole
in the center, where strong de-focusing takes place. But the
two are complementary, as can be seen by considering how
the image would change where the current simply reversed
everywhere—the central hole would become a bright spot (and
presumably the locus of a caustic in the nonlinear image), the
wall a trough. The complementarity between the two features,
which is obvious when their interpretation is in terms of cur-
rent, is lost when one adopts only caustics as an interpretive
key.

This leads to a final point. It is current, not the caustic
structure, that makes these images intelligible. Even in the non-
linear regime, despite the invalidation of the linear theory, we
see that current continues to be a valuable guide to the image
structure. This consideration is important for image analysis
but vital for experimental design: the decision on where to posi-
tion and how to orient a radiographic setup should be made,
to the maximum extent possible, on the basis of the morphol-
ogy of the MHD currents that one expects to be produced in
the experiment. Setting up the proton beam largely perpen-
dicularly to expected current flows would result in avoidably
weak signal; contrariwise, the signal may be optimized by
aligning beam and currents to the greatest extent possible.
This highlights the importance of high-fidelity simulations of
laser plasma experiments, such as the ones described in the

study of Tzeferacos et al.38,39 Such simulations allow one to
discern the main current flows in the plasma and hence opti-
mize one’s radiographic setup with respect to the experimental
setup.

X. DISCUSSION

We have shown in this work several new and interest-
ing results in the theory of proton radiography. First, we
have shown that in the linear regime (i.e., the small image
contrast regime), proton radiographic images of magnetized
(non-electrified) plasmas are simply projective images of MHD
current. This fact, which was not previously recognized, lends
considerably more diagnostic power to the analysis of such
radiographs, which may be interpreted directly in terms of
the currents that they image. This is a much more direct and
less cumbersome analysis than that proposed in K2012,20

wherein radiographs are interpreted using assemblies of field
configurations to mimic structures observed in the image.

Second, we have shown that, in the linear regime, it is
possible to reconstruct the line-integrated transverse magnetic
field by solving a steady-state diffusion equation with a source
and an inhomogeneous diffusion coefficient that are both func-
tions of the proton contrast image on the radiograph. Given an
independent estimate of the interaction region size li, this trans-
lates directly into estimates of the transverse magnetic field,
averaged over proton trajectories.

Third, we have shown that proton-radiographic images
of isotropic-homogeneous turbulent magnetic fields can be
straightforwardly analyzed to infer the field spectrum, which
is obtainable from the Fourier transform of the two-point auto-
correlation function of the image. The average magnetic field
energy density is also easily obtainable from this kind of
analysis.

Fourth, by assessing the range of validity of the linear
reconstruction method, we provide guidance to experimental
groups for obtaining path integrated magnetic fields from pro-
ton radiographs. While the applicability of the method depends
on the particular physical situation, we provide insights on
when the reconstructed field is expected to match the true field
in the experiment by examining two representative cases, the
isolated blob and the Gaussian random magnetic field. These
test cases show the method can be expected to work well when
the RMS fluctuations of the fluence contrast are small and
when large contrast regions lie well within the radiographic
image, as was the case for the isolated blob test problem.
For the stochastic field problem, on the other hand, rapidly
increasing differences between the reconstructed field and the
true field occur with increasing RMS values of the fluence
contrast. This is a result of the current projection function no
longer being a good predictor of the fluence contrast in the
nonlinear regime plus the use of the Dirichlet boundary condi-
tions combined with the non-local nature of the reconstruction
method.

Fifth, and perhaps most importantly, we have propounded
a view of proton radiograph analysis that is rather different
from what has become a standard view, to wit that structures
on radiographs are explainable by caustic formation, and that
identification of such structures and their analysis in terms
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of caustics is necessary to estimate magnetic structure from
images. That view became prevalent, we believe, because the
direct relation between radiographic structure and MHD cur-
rent structure was not yet understood, and it was felt that
the explanation of sharply defined structures on radiographs
could not be carried out merely in terms of presumably smooth
magnetic fields. For this reason, appeal was made to caustic
properties of optical systems to describe the observed sharply
defined structures.

In the view described in this work, while caustics are
undoubtedly a possible feature of proton radiographic images,
it is not generally necessary to focus on caustic structure
to interpret such images. As we have shown, sharp current
features such as filaments and sheets automatically result in
analogous sharp structures on the radiograph, whose presence
may therefore not be the result of the caustic structure. In the
linear and nonlinear contrast regimes, the transverse magnetic
field is directly recoverable from the image22 (as is the energy
spectrum, in the case of homogenous-isotropic turbulence).
From an aesthetic point of view, it seems to us much more
satisfactory to be able to interpret radiographic images not as
entangled products of the plasma structure and the focusing
properties of the proton optical system but rather as the direct
result of the plasma structure alone.

Finally, we have outlined an approach based on the
Monge-Ampère equation that is capable of reconstructing the
projected perpendicular magnetic field in the nonlinear regime
(i.e., the large image contrast regime). We present a complete
discussion of this approach in a subsequent paper.
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36S. T. Rachev and L. Rüschendorf, Mass Transportation Problems: Volume

I: Theory (Springer Science & Business Media, 1998), Vol. 1.
37M. J. Cullen and R. J. Purser, J. Atmos. Sci. 41, 1477 (1984).
38P. Tzeferacos, M. Fatenejad, N. Flocke, C. Graziani, G. Gregori, D. Lamb,

D. Lee, J. Meinecke, A. Scopatz, and K. Weide, High Energy Density Phys.
17, 24 (2015).

39P. Tzeferacos, A. Rigby, A. Bott, A. Bell, R. Bingham, A. Casner,
F. Cattaneo, E. Churazov, J. Emig, N. Flocke et al., Phys. Plasmas 24,
041404 (2017).

https://doi.org/10.1063/1.4920959
https://doi.org/10.4310/cdm.1997.v1997.n1.a2
https://doi.org/10.1038/417260a
https://doi.org/10.1023/b:visi.0000036836.66311.97
https://doi.org/10.1098/rsta.2013.0398
https://doi.org/10.1002/cpa.3160440402
https://doi.org/10.1007/bf02392620
https://doi.org/10.1051/m2an/2010017
https://doi.org/10.1051/m2an/2010017
https://doi.org/10.1175/1520-0469(1984)041<1477:aeltos>2.0.co;2
https://doi.org/10.1016/j.hedp.2014.11.003
https://doi.org/10.1063/1.4978628

